Phase Equilibria in a System of “Breathing” Molecules

نویسندگان

  • Jianzhong Wu
  • John Prausnitz
چکیده

It is now well known that details in the intermolecular potential can significantly affect the qualitative features of a phase diagram where temperature is plotted against density for the coexistence curves among fluid and solid phases. While previous calculations of phase diagrams have assumed a time-invariant potential function, this report concerns the phase diagram for “breathing” molecules, i.e., molecules whose strength of intermolecular attraction fluctuates in time. Such fluctuations can occur in biomacromolecules where an active site can switch between “on” and “off” positions. Phase-equilibrium calculations were performed for molecules that have a periodic (breathing) attractive force in addition to the conventional intermolecular forces. The phase diagram for such molecules is as expected when the “breathing” properties are independent of density. However, when (more realistically), the “breathing” properties are density dependent, the phase diagram exhibits dramatic changes. These calculations may be useful for interpreting experimental data for protein precipitation, for plaque formation in blood vessels and for scaffold-supported tissue formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Equilibria of the Ternary System Water + Phosphoric Acid + 1-Nonanol at Different Temperatures

The purpose of this reaserch is to measure the phase equilibrium data of the ternary system (water + phosphoric acid + 1-nonanol) at different temperatures. Experimental solubility curves and tie-line points for the system were obtained at T = 298.2, 308.2 and 318.2 K and ambient pressure. The binodal curve data were detected by the cloud point method. The mass fractions of each layer ...

متن کامل

Experimental and Theoretical Study of Phase Equilibria in Aqueous Mixtures of Lactic Acid with Benzyl Alcohol and p-Xylene at Various Temperatures

Liquid-liquid equilibria for the (water + lactic acid + benzyl alcohol or p-xylene) ternary systems were investigated at atmospheric pressure and in the temperature range from 298.15-318.15 K. The studied systems exhibit two types of liquid-liquid equilibrium (LLE) behavior. The system consisting of benzyl alcohol displays type-1 LLE behavior, while a type-2 behavior is exhibited by th...

متن کامل

A Fugacity Approach for Prediction of Phase Equilibria of Methane Clathrate Hydrate in Structure H

In this communication, a thermodynamic model is presented to predict the dissociation conditions of structure H (sH) clathrate hydrates with methane as help gas. This approach is an extension of the Klauda and Sandler fugacity model (2000) for prediction of phase boundaries of sI and sII clathrate hydrates. The phase behavior of the water and hydrocarbon system is modeled using the Peng-Robinso...

متن کامل

Modeling of liquid–liquid equilibria of aqueous alcohol + salt systems using amodified NRTL

The modified NRTL (m-NRTL) model is used to represent the excess Gibbs free energy of aqueous (alcohol + electrolyte) solutions. In this work, the m-NRTL model previously developed for representation of vapor-liquid equilibria for (polymer + salt + water) systems has been extended to represent liquid-liquid equilibria of (alcohol + salt + water) systems. The proposed extension is a modified of ...

متن کامل

Liquid - Liquid Equilibrium of (Methylcyclohexane + Methanol + Ethyl Benzene): Experimental Data and UNIQUAC Model

The determination region of solubility of methanol with gasoline of high aromatic content was investigated experimentally at temperature of 288.2 K. A type 1 liquid-liquid phase diagram was obtained for this ternary system. These results were correlated simultaneously by the UNIQUAC model. The values of the interaction parameters between each pair of components in the system were obtained f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002